3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints
نویسندگان
چکیده
The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object’s surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.
منابع مشابه
Geodesic Object Representation and Recognition
This paper describes a shape signature that captures the intrinsic geometric structure of 3D objects. The primary motivation of the proposed approach is to encode a 3D shape into a one-dimensional geodesic distribution function. This compact and computationally simple representation is based on a global geodesic distance defined on the object surface, and takes the form of a kernel density esti...
متن کاملA Bayesian Approach to Perceptual 3D Object-Part Decomposition Using Skeleton-Based Representations
We present a probabilistic approach to shape decomposition that creates a skeleton-based shape representation of a 3D object while simultaneously decomposing it into constituent parts. Our approach probabilistically combines two prominent threads from the shape literature: skeleton-based (medial axis) representations of shape, and part-based representations of shape, in which shapes are combina...
متن کاملShape analysis based on medial models incorporating object variability
Knowledge about the biological variability of anatomical objects is essential for statistical shape analysis and discrimination between healthy and pathological structures. This paper describes a novel approach that incorporates variability of an object population into the generation of a characteristic 3D shape model. The proposed shape representation is a coarse-scale sampled medial descripti...
متن کاملIndexation de maillages 3D par descripteur de forme Shape-based retrieval of 3D mesh models
This paper deals with 3D mesh indexation by using shape descriptors (SD) under constraints of geometrical invariance and topological robustness. The 3D Shape Spectrum Descriptor (3D SSD), recently adopted within the future MPEG-7 standard, is first introduced. The 3D SSD aims at providing an intrinsic shape description of a 3D mesh and is defined as the distribution of the shape index over the ...
متن کاملMedial models incorporating shape variability for 3D shape analysis
Knowledge about the biological variability of anatomical objects is essential for statistical shape analysis and discrimination between healthy and pathological structures. This paper describes a novel approach that incorporates variability of an object population into the generation of a characteristic 3D shape model. The proposed shape representation is based on a fine-scale spherical harmoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017